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THREE-DIMENSIONAL SHIELD MECHANICS

By Thomas M. Barczak' and W. Scott Burton?

ABSTRACT

This Bureau of Mines report describes research on developing technol-
ogy to utilize shields as roof load monitors. Three~dimensional equa~
tions of static quilibrium are presented for a generic two-legged long-
wall shield. The equations are presented in the most general form,
assuming a force and moment vector at each reaction by rigid-body analy-
8is of the s8hield mechanics. The resulting system of equations was
found to be indeterminate to a very high degree. A three-dimensional
solution to measurement of the resultant reaction on the canopy by the
strata activity and shleld response required the elimination of several
forces or moments that were thought to be nonparticipating or to not
significantly affect overall shield mechanics. Required measurements
for solution of the equilibrium equations were leg, canopy capsule, and
lemniscate 1link forces. Two~dimensional analysis, which considered
forces acting only in the roof-to-floor and face-to-waste plane, was
also provided by reduction of the three-dimensional equations.

1Physicist, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA.
2Mechanical engineer, Boeing Services International, Pittsburgh, PAJ



INTRODUCTION

The Bureau of Mines 1s conducting re-
search to evaluate the use of longwall
roof supports as roof load monitors in an
effort to develop a better understanding
of the support requirements assoclated
with strata loading and support-strata
interaction.

Past efforts to use roof supports as
load-sensing devices have generally been
limited to one—~dimensional analysis by
summation of measured leg forces to ob~-
tain a vertical (roof-to-floor) reaction
to describe support resistance to applied
strata loading. Modern longwall sup-
ports, such as the ghileld, are designed
to resist both roof~to—floor {(vertical)
and face—~to-waste (horizontal) loading,
requiring two-dimensional analyses to de-
termine vertical and horizontal support
reactions. The Bureau has demonstrated
that vertical and horizontal support re-
sistance can be reasonably determined
from two-dimensional modeling of the sup~
port structure by static rigid-body
analysis.

The two—dimensional model assumes there
are no lateral (parallel to the face)
loads acting on the support and does not
consider the effect of moment loading
due to imbalances 1n leg and lemniscate
iink forces. These limitations are over-
come by three—dimensional modeling of the
support structure 1n which participa-
tion of out-of-plane forces and associ-
ated moments 1s considered, 1n theory
permitting determination of reactions in
three dimensions, 1.e., wvertical (roof-
to~floor), Thorizontal (face—~to-waste),
and lateral (parallel to face). Unfor-
tunately, the advancement of a three~
dimensional model is not without diffi-
culties. 1In the derivation of rigld—-body
static models 1n three dimensions, the
accumulation of unknowns far outpaces the
avallable force and moment equilibrium
equations, making the sgystem statically
indeterminate. Assumptions are therefore
required regarding the particlipation .of
some forces and moments to reduce the
system's indeterminacy.



This report first presents the model in
full form, depicting all the forces and
moments theoretically acting on a shield
structure. It then proceeds to eliminate
forces and moments that realistically do
not significantly participate to provide

a determlnate solution for three~dimen-
sional resultant force vector determina-
tions. The model 18 also reduced to a
two~dimensional state by elimination of
out-of~plane forces and moments.

THREE-DIMENSIONAL RIGID-BODY SHIELD MODEL

Figure 1 shows the configuration of a
generie, two-legged shield, illustrating
major shield components. In the follow-
ing pages, the static, rigid-body equa-
tions of equilibrium are presented for
the canopy, caving shield, and base com—
ponents of the shield; tables 1-3 give
the respective nomenclature descriptions.
Each component 1s considered separately
with 11lustrations of component forces
and moments. Equations are provided in
both vector and scaler component form.
Although the shield is a pin-jointed
structure, the equations are presented in
the most general form by assuming that
reaction moments occur at all joints due
to pin friction. Hence a joint 1is con-
sidered to have six degrees of freedom,
consisting of three force components and
three moment components. With 2 pin con~
tacts, 1 capsule contact, 2 leg contacts,
and 1 assumed reaction contact, there are
18 force and moment vectors that must act

in force and moment equilibrium on the
canopy alone. The only simplification
provided in this analysis is the combina-
tion of like forces and moments, such as
left and right leg forces and left and
right link forces, 1into single, equiva-
lent force-couple systems acting at the

component {canopy, caving shield, or
base) centerline.
Y
4 Canopy —
~~ ] RIS 5
Tip

FIGURE 1.-~Shield components and coordinate reference
systems.



CANOPY

TABLE 1. - Canopy nomenclature description

Symbol

Vector represented

Scaler components

w ol o

H? oM X =R R OB
© U - £ 07

R
xor

Canopy hinge pin fOrCeesssevsseesvsavessvsssososscssnsssannce PX" PV" sz

Canopy capsule fOTCeeeeressososnsnsnssssssressnessvnassncss Qx], Qyj, Qz]

Leg Cylinder fOrCErsessscsssssnssansanssssasssasnsassssnas th, Ly’, LZI

Resultant force.......o...-............‘.......‘..uo...... RX?’ Ry], RZ‘

Canopy hinge pin momentSoococcootooccao‘oc..‘toccooooo.coo MPX1’ MPY‘? MPZ1

Canopy Capsule MOMENLevsssssssvsvscestsasacsesssecssssnsessns Moxj, MQV1’ Moz]

Leg cylinder MOMENLesssssssescsesossvssssssssossssssssssssse MLX1) MLy], MLZ1

Canopy resultant force MOMENCeessesscssssssesssssssssnssas Mij, MRY1’ Msz

Canopy Capsule moment vector distance.oacoooolcooooo.ooooo X‘O, y]o Z]Q

Leg Cylinder moment vector distancCessessssssscesosscssssos XLy YtiLs Z1L

Resultant moment vector diBtanCeeseosssessssccnssssssscnss X1Ry YIRs Z1R

Left
Tip
“SCenteriine |
Right
Top
Tip
Bottom

FIGURE 2.—Forces and moments on canopy.



I¥
JFx1
ZFyl
1Fz1
I (o1)

XMx 1 (01)

iMy1(01)

IMz1(01)

Summation of Forces (fig. 2)

P+Q+L+R-=0.

Px1 + Qxt + Lx1 + Ry = 0.
P,i + Q1 + Lz + Ry1 = O.

Mp + Mo + My + Mg + (Fo x Q) + (7L x L) + (% x K) = 0.

Mpx1 + Mox1 + Mix1 + Mryx1 + (y10Qz1 = 210Qy1)
+ (y1tLz1 = z1Ly1) * (y1rRz1 = z1RRy1) = O,
Mpy1 + Mgy1 + Miy) + Mpy1 + (210Qx1 — x10Qz1)
+ (z1Lx1 = x1.Lz1) + (218Rx1 — x1RRz1) = O,
Mpzi1 + Mgzt + Mpzy + Mzt + (x10Qy1 ~ ¥10Qx1)

+ (x1Lyt1 = ¥relxr) + (21rRyq — ¥1RRx1) = O,

(1)
(2)
(3>
(4)
(5)

(6)

(7

(8)
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CAVING SHIELD

TABLE 2. - Caving shield nomenclature description

Symbol

Vector represented

Scaler components

RO R R R ol W o
- o m O

(V4]

b4

=
o]
o

Canopy hinge pin forceiicessesesscenssesesestnsesssscces
Capsule fOrCEsseeenssesssresnosnsasnsesssncessnsssassssssns
Compression lemniscate link forceessecscssassssscssnanes
Tension lemniscate 1ink fOrCe@icscsscscssesnssstsesscrans
Caving shield gob reaction forceciescssessessessssssavense
Canopy hinge pin momentecesscesscesssssasesossasscsessosss
Capsule MOMENEeseessesscosossssasnssessssesassosasssosss
Compression lemniscate 1ink momentessvecessecssrsssonces
Tension lemniscate 1ink momenteessossssnescosscecasesses
Gob reaction mMOmMENteesscsssoessscrossosensssssesessossans
Canopy hinge pin moment vector distancCescesscscvssscsoss
Capsule moment vector distancCesisseccssosceescsossesscnsos
Compresslon lemniscate link moment vector distancescees.

Gob reaction moment vector dlstanceessescssscccesscsnses

Ex2> Ey2> Ezz
Uy2, UyZ’ Ugz2
Ty2s TyZ» Tz2
Sx2» Sy2: S22
RCxZ’ RCyZ: Rsz
MEXZ: MEyZ’ Mezo
Myx2s Myyz, Myz2
Mrx2, Mry2, Mrs2
Msyx2, Mgy2, Mgz2
MRrcx2, MRcy2» MRe22
X2Es Y2E» Z2E
X2U, Y2us 22y
X2Ts Y27s 227
X2RC» Y2RC» Z2RC

Left
Re, _
~ TRe Mrc ~
M 9 ~ | M
T g 0 EE
02l el T \/ -
Xé‘ﬁT wl < Toward
A A Ty 'E | canopy
S %2 hinge

FIGURE 3.—Forces and moments on caving shiaeld.



JF
ZFxZ
EFyZ
EFZZ
M (02)
Zﬂxz(02)
EMyz(OZ)
IM22(02)

Summation of Forces (fig. 3)

E+UT+T+8+R; = 0.

Ex2 + Uyx2 + Tx2 + Sx2 + Roxz = 0.
Eyz + Uy2 + TyZ + Sy2 + RCyZ = 0,
Ezp + Uyg + Tyo + 872 + Rez2 = 0.

Summation of Moments (fig. 3)

Mg + My + My + Mg + Mpg

+ (¥ x B) + (Fy x U) + (¥ x T) + (¥pe x Rg) = O,

MEx2 + Myx2 + Myyx2 + Mgy2 + Mrex2

+ (y2eEz2 ~ z2gBy2) + (y2uUz2 - z2yUy2) + (¥27Tz2 = 227Ty2)
+ (y2rcRcz2 - z2rcRey2) = O.

Mgy2 + Myyz + Mry2 + Mgy2 + Mpoy2

+ (z2eEx2 ~ x2gEz2) + (22uUx2 — x20Uz2) + (227Tx2 — x27T22)
+ (z2rcRex2 ~ X2rcRez2) = O.

MgEz2 + Myzz + Myz2 + Msz2 + Mpez2

+ (x2eEy2 — y2eEx2) + (x2uUy2 = y2uUx2) + (x27Ty2 - y21Tx2)

+ (x2rcRcy2 — Y2rcRex2) = O.

(9)
(10)
(11)
(12)

(13)

(14)

(15)

(16)



BASE

TABLE 3, — Base structure nomenclature description

Vector represented Scaler components

Base resultant reaction force..e.oeseesvecesvcscsccsnneesss | Rpys, Ryys, Rpzs
Leg forceeececssessesveoresesssrvenscesvsvessoscscesncsnes | Bys, Byz, Bys
Compression lemniscate link forcesseesscescesecssesssecees| Cy3, Cy3, Cy3
Tension lemniscate link forcecsssscsssseesssessccsssvenees | Dy3, Dys, Dy3
Base resultant reaction moment distanceesssesssseseseescss | X3r8, Y3RBy Z3RB

Leg moment vector distanceoo000.otooooo.oooooooooooooeooo0 X}B) y}B, ZSB

Compression lemniscate link moment distancC@essescesoseeses | X302, VY30, Z3(

Left

Front

MgrB

FIGURE 4.—Forces and moments on base.



Fo-
ZFx3 =
ZFVS =
ZFZ3 =
M (03) =
IMx3(03) =
My3(03) =
Mz3(03) =

Summation of Forces (fig. 4)

R +B+C +D =0,

it
(@

Rex3 + Bx3s + Cyx3 + D3
Rpys + By3s + Cys + Dy3 = 0.

0.

B

Rgz3 + Bz3 + Cz3 + D;3

Summation of Moments (fig. 4)

Mpp + Mg + Mg + Mp

+ (¥rp x ﬁs) + (¥p x B) + (Fo x €) = 0.
Mrex3 + Mpx3 + Mgx3 + Mpys

+ (y3r8RBz3 = Z3RBRBY3) + (y38B;3 - z3pBy3)
+ (y3cCz3 - 23cCy3) = 0.

MrBy3 + MBy3 + Mcy3z + Mpy3

+ (z3rBRBx3 - X3rBRBz3) + (238Bx3 ~ x38B;3)
+ (230cCx3 - x3¢Cz3) = O.

MrBz3 + MBz3 + Mcz3 + Mpz3

+ (x3r8RBy3 - y3RBRAx3) + (X38By3 — y38By3)

+ (x30Cy3 ~ y3¢Cx3) = O,

(17)
(18)
(19)
(20)

(21)

(22)

(23)

(24)
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TRANSFORMATION OF COORDINATE SYSTEMS

sented in the previous section wutilized

! The static equilibrium equations pre- y|
three different coordinate systems to t i[

Canopy

. take advantage of the relative orienta- Ol

r;f tion of major shield components (canopy, 9

caving shield, base). Reduction of these

‘ equations requires  transformation of

these three coordinate systems into a . .

t single coordinate system. Since the de- Cavmg shield
! sired solution 1is the resultant force

acting on the canopy, the caving shield

! and the base equilibrium equations are

! transferred to the coordinate system des~ Yo X2
! ignated for the canopy.

‘ The transformation of the caving shield 02

coordinate system (x2, ¥z, %Z2) into the

canopy coordinate system (xy, yi, z1) is

achieved by rotation of the (x3, ¥, Z2)

system as illustrated in figure 5. Math~ Rotate coordinate system 2
ematically this rotation is accomplished ; :

by the orthogonal transformation: into coordinate system |

Vx1 = Vy2cos 6 - Vypsin 8, (25)

Vy1 = Vx2sin 6 + Vyzcos 6, (26)

Vz1 = Vz2, 27

where ¢ is the angle from the xy axis to
the x2 axis and V is a generic vector.

The coordinate transformation of the
caving shield coordinate system (x2, y2,
z7) into the global canopy system (xi,
¥1, z1) eliminates several unknowns by FIGURE 5.—Coordinate system transformations.
equating common forces and moments.

) E = -AI; or Ex1 = =Px1 and Mgx1 = -Mpyx1.
I Mg = -Mp  or  Eyy = -Pyy and Mgyy = Mpya.
Ezi = =Pz and Mgz = -Mpso.
¥ = -Q or Ux1 = =Qx1 and Myx1 = -Mpxi.
ﬁu = «ﬁg Uyt = -Qy1 and MUy! = -Mpy2.

Uzy = =Qz1 and Myz1 = -Moz2.
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Using the transformation presented in equations 25 through 27 and the substitution
for equivalent forces and moments discussed previously, the transformed force and mo-
ment equations for the caving shield in the global (x4, y;, z{) coordinate system are

as follows:
Summation of Forces

JFu1 = -Pyy = Q1 + (T, pcos a - Ty28in a) + (Sy2cos o ~ Syzsin a)

QR

+ (Rgx2c0s o — Reyzsin a) = O.

L

EFyy -Py1 = Qy1 + (Tx2sin o + Tyzcos a) + (Sy28in o + Syzcos @)
+ (Rex28in a + Reyzcos a) = O.
JFz1 = -Py1 = Qz1 + Tz2 + Sz2 + Rgzz = O.

Summation of Moments

IMc1(02) = -Mpyy — Mgyxq + (Myxzcos o - Mryosin a)

+ (Msxzcos o - Msy2sin a) + (Mrcxzcos o — Mpeyzsin a)
+ [-Pz1(x2gs8in a + yzgcos a) + (Py1)(z2e)]

+ [-Qz1(x2ysin a + yzycos a) + (Qy1)(z2y)]

[Tz2(x278in a + y21cos a) - (Tyzsin a + Tyzcos a) (z27)]

+

[Rez2(x2Rrcs8in o + yorccos a)

+

(zorc)(Rex2sin o + Reyzcos a)] = 0.
XMyl(OZ) = =Mpy1 = Mgyy + (Myy28in o + Myyzcos @)

(Mgyosin o + Mgy2cos a) + (Mrex28in o + Mrcy2cos a)

+

+

[z2F (-Py1) + (Pp1)(x2gcos o - yopsin a)]

[z2u (-Qx1) + (Qz1)(x20c08 o = y208in a)]

e

[227(Ty2c08 o = Tygsin a) - Tz2(x271cos o - y2718in a)]

+

+ [z2rc(Rcx2cos @ - Rey2sin a)

- RC,2(x2rccos o — y2resin a)] = 0.

t

(28)

(29)

(30)

(31)

(32)
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IMz1(02) = -Mpyq = Mgzq + Mr,p + Mgy + MRgy)
+ [x2gBy2 = y2eBx2] + [x2yUyz = y2uUx2l + [x271Ty2 — y21Tx2]
+ [x2rcRey2 — ¥2rcRex2l = O. (33)
As indicated by the coordinate transformation (equations 25-27), there is no rota-
tion of the (x3, y2, z2) coordinate system for the z-axis transformation, resulting
in a direct transformation zy; = z,, A further simplification of the M,;(02) equation
can be achieved by substituting terms expressed in the (X2, y2, Z3) coordinate system
by equivalent terms in the (xy, y;, z{) system where
X2 = xqcos o + yysin o (34)

y2 = yi1cos & - x18in « (35)

and by substitution of -P for E and -6 for U. Remember that these are equivalent ex~
pressions and not transformations.

The equation for }My1(02) then becomes
IMz1(02) = -Mpzi ~ Mgzt + Mrz2 + Msz2 + Mpex2
+ [x2e(Px18in @ = Pyjcos a) + y2p(Pxicos a + Pyysin a)l
+ [x20(Qx1sin @ = Qyicos @) + y2y(Qxicos a + Qyisin a)]
+ [x27(Ty2) = y21(Tx2)] + [x2rc(Rey2) — y2rc(Rex2)] = 0. (36)
Since there 1s no rotation of the base coordinate system, the equilibrium equations

for the base result in a direct transformation and therefore are the same as those
presented previously, where

Vuz = Vxis (37
Vy3 = Vy‘, (38)
and Vz3 = Vz]- (39)

SOLUTION OF THREE-DIMENSIONAL RESULTANT SHIELD LOADING

The resultant force reaction on the canopy 1s described in six parameters identify-
ing force and location parameters as follows:

Rx1 = Horlzontal resultant canopy reaction force.

Ryt = Vertical resultant canopy reaction force.

Rz Lateral resultant canopy reaction force.

x1r = Location of resultant force in horizontal axis.

Y IR Location of resultant force in vertical axis.

Z1R Location of resultant force in lateral axis.
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Direct solution of the equilibrium equations for these s8ix unknown parameters re—
quires static determinacy. A fleld instrumentation array developed and tested in the
Bureau's mine roof simulator3 enables determination of leg, canopy capsule, and lem—
niscate link forces. The resulting system of equations is indeterminate to a high
degree, requiring reduction of the number of wunknowns for a closed~form solution.
While various combinations of unknowns are possible as candidates for elimination
without endangering the accuracy of the £final solution, table 4 presents proposed
parameters with Justification for elimination. These reductions allow solution of
three—~dimensional resultant force £from measurement of leg, canopy capsule, and
lemniscate 1ink forces.

With deletions of nonparticipating forces and moments identified in table 4, solu-
tion of the three—dimensional resultant load parameters 1s as follows:

TABLE 4, - Parameter elimination identification'

Parameter Identification Justification
Lyjesessneceesess | Lateral leg loadicessseeeesss | Leg 18 pin jointed acting in x-y
plane incapable of transmitting
lateral (z) load without structural
deformation of pin joint.

Qzieeeessssesses | Lateral canopy capsule load.. Do.
ﬁc.............. Caving shield gob reaction Major loading 1s to canopy and base.
load. For cantilevered strata, there is

likely to be little gob loading.

ﬁRc............. Gob reactlon moment.e.seseesss | No moment due to no load assumption
(item 3).

ﬁR.............. Canopy resultant force moment | The canopy resultant reaction force
couple in pitch and roll 1s dis-
solved by allowing the resultant
force to be positioned at the
proper location to provide an
equivalent force reaction at the
required distance from the canopy
hinge pin. The yaw moment is also
assumed zero.

ﬁg.............. Canopy capsule reaction No canopy capsule moment by assuming
moment. frictionless pin joint which cannot

transmit torque.
TA11 z's are zero except for moments since forces act along centerline.

3Barczak, T. M., R. C. Garson, P. M, Yavorsky, and F. S. Maayeh. State-~of~the~Art
Testing of Powered Roof Supports. Paper in Proceedings of Second Conference on
Ground Control in Mining (Morgantown, WV, July 19-21, 1982). WV Univ., 1982, pp. 64~
77
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HORIZONTAL RESULTANT LOAD (Ry )

1. From summation of forces on caving shield (equation 28), determine horizontal
reaction at canopy hinge pin (Py1).

Py1 = ~Qxy + (Txzcos & = Typsin a) + (Syzcos a = Syzsin a).

2. From summation of forces on canopy {equation 2), substitute (P,{) into equation
and solve for Ryj.

Ryt = =Pyt = Q1 — Lyt
= - [-Qu1 + (Tx2cos @ ~ Tyzsin a) + (Sy2cos & - Syzsin a)]

- Lyt = Qx1.

b
x
i

-Lyx1 = (TIxz2cos & - Tyzsin a) — (Sx2cos o — Syzsin o),
VERTICAL RESULTANT LOAD (Ry1)

1. From summation of moments on caving shield (equation 29), determine the verti-
cal reaction at the canopy hinge pin (Py1).

Pyt = -Qyt + (Tx2s8in o + Tyzcos a) + (Syzsin o + Syzcos a).

2. From summation of forces on canopy (equation 3), substitute Pyy into equation
and solve for the vertical resultant load (Ryj).

Ry1 = -Pyq - Qyt - Ly 1

I

- [-Qy1 + (Tx2sin o + Tyzcos a) + (Sy28in a + Syzcos )]

- le - Ly1-

L]

Ryi = -Ly1 = (Tyx28in & + Typcos a) — (Sypsin a + Syzcos a).
LATERAL RESULTANT LOAD (R,1)

1. From summation of moments about x-axis on canopy (equation 6), solve for moment
at canopy hinge pin (Mpxi).

Mpx1 = ~Mix1t — y1RRz1 + z1RRy1.

2, From summation at moments about y—axis on canopy (equation 7), solve for moment
at canopy hinge pin (Mpy1):

Mpyt = ~Myy1 — z1RRx1 + X1RrRz1.

3. Substitute Mpyi into equation for summation of moments about x-axis (equation
31) on caving shield, and solve for resultant reaction location (ziR).
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= [-Mix1 - yirRz1 + z1rRy1] + (Mrx2c0s o = Mry2sin @)
+ (Msx2cos o - Msy2sin @) - Pz1(x2esin a + y2gecos a)
+ T,2(xz718in a + yz7cos a) = O,
or
zir = [Mix1 + y1RRz1 + (Myx2c0s @ = Myy2sin a)
+ (Mgx2c08 o = Mgy2sin @) - Pzi(x2gsin o + yzgcos a)

+ Ty2(xp718in @ + yareos a)] / Ryt

4. Substitute Mpyy into equation for moments about y-axis on caving shield (equa-
tion 32), and solve for resultant reaction location zR.

= [-Miy1 = z1rRx1 + x1RRz1] + (Myy28in a + Myyzcos o)
+ (Msx28in a + Mgyocos a) + Pyi(x2gcos o ~ yoesin o)
- Ty2(x27c08 & = yorsin a)] = 0.
zir = [-Miy1 + %1RRz1 = (Mrx28in o + Myypcos @)
- (Mgx28in a + Mgy2cos a)
~ P,1(xpgcos o = yogsin a)
+ Tz2(x27cos & — yo718in a)] / Ryie.

5. Set expressions for zir equal to each other.

Ry1[Mix1 + y1rRRz1 + (Myx2c08 o — Myy28in a)

+ (Mgx2cos o - Mgy28in a) ~ Pzi1(x2esin o + y2gcos a)

+

Tz2(x2718in o + y27cos a)]

1t

Ry1[-MLy1 + x1RRz1 — (Myx28in a + Myyzcos o)

(Mgy28in a + Mgyzcos o) - Pzi(x2gcos a - y2gsin a)
+ Ty2(x27c08 & = y27sin a)l.

Substitute P,1 = -Rpq.
Rz1[Rx1(*+y1r + (x2g8in o + y2ecos a))]

- Rz1[Ry1(x1r + (x2Ec08 0 - y2gsin a))]

Rxt [-Mix1 = (Mrx2cos @& = Myyzsin a)

(Mgx2cos @ - Mgy2sin a) = Tz2(x27sin a + yzvcos a)]
+ Ryt[-Miy1 - (Mrx2sin o + Myyzcos o)

- (Mgx2s8in o + Mgy2cos a) + T 2(xz71cos & — yz7sin a)l.
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Solve for R;1.
R,y = {Ry,[—MLy1 = (Myx28in o + My, pcos o)
- (Mgy28in o + Mgyocos a) + T,2(x27c0os & = yz78in o)]
- Ry1[MLx1 + (Myxzcos o - Myy28in a)

+ (Mgypcos o - Mgy28in a) + T,2(x278in a + yztcos a)]}

.

{Re1lyi1r + (x2e8in o + yzecos a)]
~= Ry1[xq1Rr + (x2gcos o - yzgsin a)ll.
VERTICAL RESULTANT LOCATION (y1Rr)

y1r 1s fixed by the plane of the canopy with the resultant defined to act on the
surface of canopy.

HORIZONTAL RESULTANT LOCATION (x{R)
From summation of moments about z-axis on the canopy (equation 8), solve for x{R.
xR = ["Mpz1 = (X10Qp1 = ¥19Q1) — (x1Ly1 = yroLxt)
+ y1RRx1] / Ry

where Mp,y is found from summation of moments about the z—-axis on the caving shield
(equation 36).

Mpzy = Myzp + Mgzp + [x2g(Pyysin o ~ P,ycos a)
+ y2e(Pyicos o + Pyysin a)] + [x,y(Qx8in o = Qyjcos a)
+ y2u(Qxicos o + Qyysin a)] + [xa7(ry2) - y27(Tx2) 1.
LATERAL RESULTANT LOCATION

Lateral resultant location was found in step 4 of the solution for lateral resul-
tant load from summation of moments about the y—-axis on the caving shield.

zir = [-MLy; + x1pRz1 = (Mgx28in o + Mgyzcos a)
> (Mrx2sin o + Myycos a) — Pyi(xz2gcos & - yzgsin a)
+ Ty2(x271c08 0 - yo78in a)] / Ryie
Inputs to this set of equations just developed are determined from measuring leg,
canopy capsule, and lemniscate link forces. A review of this reduction begins with

leg forces and moments. The left and right leg forces are obtained by multiplying
the leg pressures by the piston area:

L+ = pt AL (40)

pR ALR (41)

LR



where LY, LR, pL, PR, AL, and A g are
the left and right leg forces, and leg
pressures and areas 1n pounds (force),
pounds per square inch, and square inch,
respectively. The components of these
leg forces in the (x1, yl, 2l1) coordinate

frame are

Lt = L cos oy, (42)
LY = Lb sin ay, (43)
LR = LR cos ay, (44)
L§ = LR gin ay, (45)

where oy is the angle from a line paral-
lel to x1 (the horizontal) to the leg.
(This angle is less than 90°,)

Combining the left and right leg forces

at the center of the legs, the Lyj and
Lyi are obtained as
Lyt = 'Ly + RLy, (46)
Ly = 'L, + Ruy, (47)

and the moments created by their imbal~
ance, Mjx1 and My, are

Mix] = ~zL L§ + zZ| Lry, (48)

My =z, L§ -z L§, (49)
where z| 1s half the distance between the
leg axis.

The capsule force (in pounds force) is
determined by multiplying the capsule ex—
tend pressure by the extend plston area
and subtracting the capsule retract pres-
sure multiplied by the retract piston
areat

Q = (PCEACE — pCR ACRY (50)
where PCE, PCR, ACE,  and ACR are capsule
extend and retract pressures and areas in
pounds (foree) per square inch and square

inch respectively. The capsule inputs,
Qx1 and Qyy, are then
Qx1 = Q cos aj, (51)
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Qy1 = Q sin ap, (52)
where ay 1s the angle from a line under
the capsule, parallel to the xl1 axis
(horizontal), to the capsule axis. (When
the capsule is level, this angle is 0°.)

The link forces are the most difficult
to reduce. The first step 1s to define
the geometry. Link forces can be deduced
from straln measurements. Three—element
rosette gauges provide stress-strain pro-
files for each structure. For any link
rosette the local gauge geometry 1s shown
in figure 6. The principal strains €,
and €7 and the angle ¢ of the principal
frame from the x' y! frame can be deter-
mined from the three rosette strains e,,
Egy Eg by4

€1,2 = 1/2 (ep + €¢)

t 1!£VQ€A - €c)? + (2ep - ep - €¢)? (53)

2eg - €5 ~ €g,

€EpA — EC (54)

2¢ = tan -1

4Dally, Je We, and W, F, Riley. Exper-
imental Stress Analysis. McGraw-Hill,
1978, p. 322,

Caving shield

Principal axis

—~—L.ink longitudinal
center line

Base

FIGURE 6.—Local forward link strain rosette geometry.
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For plane stress, the principal stresses
follow:

o1 = [E/(1 - v®) (e + vep), (55)
op = [E/(L - v®)](ez + vey),  (56)

where E is Young's modulus and v is Pois-
son's ratio.

These stresses are then rotated into
the t, /L (transverse, longitudinal) co-
ordinate frame (fig. 6) by

og = 02 cos? (45° - ¢)
+ oy sin? (45° - ¢), (57)

o9 sin? (45° - ¢)

Oy
+ 0y cos? (45° - ¢), (58)
T4g = (sq - 0p) sin (45° - ¢)
cos (45° - ¢), (59)

where oy 1s the longitudinal stress, oy
is the transverse stress, and T4y is the
transverse, longlitudinal shear stress.

Having calculated oy, 04, and T4y for
each rosette on a link, three forces and
three moments can be calculated for the
link end connected to the caving shield.
Again, the first step 1s to define the
geometry. The link is modeled by a box
section of length £ from pin center to
pin center. The rectangular coordinate
system (£, n, £) 1is used with an origin
at the center of the base pin axis (fi%.
7). The forces and moments PLF, V;E, VLE’
and MLE, MLE, MLE, respectively, whgch
act og the ﬂcaving shield pin, are shown
relative to the coordinate system (£, 10,
£) in figure 8., The superscript LF re-
fers to left forward link. For the right
forward link the analysis 1s the sanme,
and RF may be exchanged for LF. The re-
lationships among stresses, forces, and
moments for the box beam 1link model are
available 1in most textbooks on simple
strength of materials.>

5Timoshenko, S. P., and J. N. Goodier.
Theory of Elasticity. McGraw~Hill, 1970,
pp. 112~155,

o
Caving
shield
pin axis

Strain-gauge
locations

FIGURE 7.—Forward link coordinate system,

§ yLF
fo
LF
Pe
A7
wLF ¢
Uy MLF

N £A JLF
. £

LF
Mnﬁ

FIGURE 8.-Forces acting on forward link at caving shield
pin,

In summary, the following equations
were used.

In tension,

PLF = (oLFF + ob7®) Ay/2
+ (OLEL + ULER) Az/2, (60)

where Ay 1s the cross-sectional area of
the top and bottom link plates, and Az is
the cross-sectional area of the left and
right link plates.



The superscripts on the stresses are

the rosette designations.
In shear,

VhE = (TLFL - TLFR) IQthQQ!

ig (61)

where Qr is the first moment of area of
the cross section above the raxis, IC is
the second moment or bending moment of
inertia about the Zzaxis, tr is the thick-
ness of the top and bottom link plate,
and

Vég = (TLFB - TLFL) Intn/Qn’

where I, ty, and Qn are analogous to the
above (IC’ ty, and Q;)

(62)

In torsion,
MEP = -1/2 (hy - tg)hy - ty)

EL
[(Lf® + 7LFF) ¢y

+ (TLFL + TLFR)tg} (63)
For bending, the moment at the caving
shield pin 4s a combination of bending

moments at the center and bending effects
of VLF and VLF., Bending at the center is

giveggby &n
LF LFR _ LLFL
Mn = (02 o4 )In/4h€, (64)
MéF = (o8I, /4ny. (65)
Then the bending at the end & = £ is
given by
MLF = MLF - vLF g/2, (66)
and Ei LF EE
MCQ = MC V /2. (67)
The simple wuniaxial strain-gauge place-
ment on the front and back of the link
provides the link extensional force

( PL ) and a pure bending moment load-
ing (MLz) on the pin axes. With the

uniaxial gauges, only one stress 1s
assumed to exist, i.e., longitudinal
stress, 09, which is obtained from the

strains by

g, LFR = EgLRF,

oL (68)
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and
oLRB = EgLRB,

: (69)

The superscripts in equations 68 and 69
indicate the uniaxial gauge. The force
and moment for each 1link can now be cal~-
culated directly, as follows:

For tension:

BLR = (agRF + 0fR%) 472, (70)
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where A = Ay + Ay the total cross section
of each rear link.

For bending:

MER = (0gRP — ofRI)T, Jhn,,. (71)

tl
With local 1link moments and forces de-
fined 1in terms of strains, they may be
combined to form equivalent force—couple
systems at the midpoints of thelr respec-
tive caving shield pin axes. First,
though, local frames (&, n, ) must be
rotated 1into the (x!, yl, zl) orienta-
tion. This is done with the following
transformation (fig. 9): 1

Ax1 = Agcos 8, = Apsin 8,  (72)
Ay = Agsin ¢ + Apcos 9, (73)
Yi
X|
Global
frame

by %l
! p [Trunslmed frame

Local frame

FIGURE 9.—Link rotation angle.
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Azt = Ag, (74)

where the £, n, ¢ components of the A in
equations 72-74 may be any of those just
derived.

Then, for links gauges with rosettes,

T;? = PLF cos a3 — VLE gin E (75)

11 ng
th = PEF sin az + V;g cos a, (76)
Tgf = Vég, an
and
M%§1 = Mgg cos o3z - Mhz sin as, (78)
M%$1 = MEE sin az + th cos az, (79)
M:F, = MEE. (80)

For the right link, simply substitute RF
for LF in equations 75-80. In all cases
a3z 1s the angle from the forward link
E-axis clockwise to the xl-axis. If the
links are assumed to be in pure bending
(t.e., uniaxial gauge applications), the
forces and moments are found as follows:

St? = PER cos 04, (81)
sb? = PgR sin a4, (82)
S35 = ViR (83)

The moments MLR and MR, are assumed to
be zero. This assumption was necessary
to make the static three-dimensional
equations determinant. The relationship
for the remaining moment is

MLR = MLE, (84)

Then the forces and moments from equa-
tions 75~80 and equation 84 were joined
with their right 1link counterparts, as
were the leg forces in equations 46-49.

For rosette—gauged links:

Ty = Th? + Tzf, (85)
Tyr = Tof + T80, (86)
T, = T§§ + Tgf, 87
trer = LD, MAE
- zTTsf + zTth, (88)
Mry1 = M%% + M$51
+ zTTzf - zTTgﬁ, (89)
Mron = uyE, o+ EE (90)

For uniaxial-gauged links:

Sx1 = sk? + sﬁﬁ, (91)
Sy1 = sb? + sgﬁ, (92)
21 = 84T + s, (93)
Mgx1 = -zss§$ + zssbﬁ, (94)
Mgyt = 3382$ - ZSS§$, (95)
Mg,1 = Mg§1 + M§§1. (96)

In equations 91-93, z7 1s half the dis-
tance between the forward link longitudi-
nal center lines. In equations 94-96, zg
is analogous to z7 for the rear links.

TWO-DIMENSIONAL REDUCTION

The three-~dimensional model previously
presented can be reduced to two dimen-
sions by eliminating chosen out—of-plane
forces. Since the primary loading occurs
in the vertical (roof-to-floor) and hori-
zontal (face-to-waste) axis, forces and

moments in the lateral axis (subscript z
for forces and x and y for moments) will
be eliminated. The equations of static
equilibrium, using the same nomenclature
as before, then become
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FOR CANOPY (fig. 2)
IFx1 = Px1 + Qxt + Lyy + Ryy = O. (97)
IFy1 = Pyy + Qyt + Lyy + Ryy = O. (98)
IMz1(01) = Mpz1 + Mozy + MLzt + Miz1 + MRz
+ (x19Qy1 = ¥10Qx1) + (X1 Lyt = y11Lx1)
+ (x1rRy1 = y1rRx1) = O. (99)
FOR CAVING SHIELD
ZFx1 = -Pyx1 = Qg1 + (Txzcos & - Ty28in a) + (Sx2cos o - Syzsin o)
+ (Rcxzcos o = Reygsin o) = O. (100)
EFy1 = =Pyy = Qy1 + (Tx2sin o + Tyzcos a) + (Sxzsin o + Syzcos o)
+ (Rex2sin o + Royzcos a) = O. {(101)
IMz1(02) + [x2e (Pxisin o - Pyjcos a) + y2e(Pxicos o + Pyysin a)l
+ [x2y (Qx18in o - Qyjcos @) + y2u(Qxicos o + Qyisin a)]
+ [x21 (Ty2) - y27(Tx2)] + [x2rc(Rcy2) ~ y2rc(Rex2)] = 0. (102)

Solution of the two-dimensional resultant load in the x-y (horizontal-vertical)
plane is then found as follows, using the same elimination of forces as in the three-

dimensional model.
HORIZONTAL RESULTANT LOAD (Rxg)

1. TProm summation of forces acting on caving shield, determine reactions at canopy
hinge pin.

'Qx] + (Tx2COS o - Tyzsin a) + (SxQCOS o - SyZSin a)t

Pyt

=Qy1 + (Tx2sln a + Ty2cos a) + (Sx2sin o + Syzcos a).

2. Substitute these expressions into the summation of moment equatlon for the cav~-
ing shield.

x26 [-Qx18in & + sin a(Tyxzcos o - Tyzsin a) + sin 6(Sxzcos a — Syzsin o)

+ Qyicos o ~ cos 0(Txzsin o + Tyzcos &) — cos a(Sxzsin o + Syzcos a)]
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3.

where

4.

-y2e [Qx1cos a — cos a(Tyzcos @ — Typsin a) - cos a(Sx2cos o - Syzsin a)
+ (Qy1sin & - sin a(Tx2s8in o + Tyzcos a) - sin a(Sx2cos o + Syzsin o)]
+ X2y (Qx18in @ —- Qyicos a) + y2y(Qxicos o + Qyisin a)

+ x21 (Ty2) - y27(Tx2) = O.
x26 [-Qx18in o = Ty2 — Sy2 + Qyicos a]

- ¥2& [Qx1cos a = Tyz = Sy2 + Qyisin o]

+ x2y [Qx18in o - Qyqcos a] + yoyl[Qxicos @ + Qyisin a]

+ %27 (Ty2) = y21(Tx2) = O.

Solve for tenslon link force S where

Sy2 = 8 sin B and Syp = S cos B

B equals angle between link and y-axis in (x2, y2, 2z2) coordinate frame.
x2¢ [-Qxisin o - Ty = 8 sin B + Qyqcos a]

- y2e [Qx1cos @ - T,y — S cos B + Qyysin a]

+ x2u [Qx1sin a = Qyicos a] + you [Qxicos a + Qyisin o]

+ q27 (Ty2) — y21(Tx2) = O.
§ = {?i [-Qx1sin @ = Ty2 + Qyicos a] - y2e[Qxicos a ~ Tx2 + Qyisin a]

. [Qx1sin @ - Qyicos a] + y2ulQxicos o + Qyisin o]

+ x27 (Ty2) = y27(Tx2)}/[x2e8in B - yzgcos Bl.

From summation of forces on caving shield, determine horizontal reaction at

canopy hinge pin.

5.

Py1 = =Qx1 + (Txzcos o - Tyzsin a) + (Sxzcos a - Syzsin a).

Substitute results of steps 1-4 into equation for summation of forces on canopy

and solve for (Ryi)e

1.

Ryt = =Pyt = Q1 = Lx1e
VERTICAL RESULTANT LOAD (Ry1)

Solve for wvertical reaction at canopy hinge pin from summation of forces on

caving shield.

Py1 = =Qyt + (Ty2sin o + Tyzcos a) + (Sy2sin o + Syycos a).
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2. Substitute Py and results from step 3 previously into expression for summation
of forces on canopy and solve for Ryy.

Ry1 = =Py1 = Qy1 = Lyq.
VERTICAL RESULTANT LOCATION (xiRr)
Solve for xR from summation of moments on canopy.

xR = [-(x10Qy1 = y10Qx1) — (x1tLyt - y1tlx1) + yirRx] / Ryt.
CONCLUSIONS

The solution of shield mechanics from a rigid-body static analysis of the shield
structure is fundamental to an understanding of shield behavior. A three-dimensional
analysis considering three forces and three moments at each reaction reveals the
shield structure 1s indeterminate to a high degree. A determinate solution is pro-
duced by eliminating several unknowns which are nonparticipating or thought to have
little effect on overall shield mechaniecs, and by measuring leg, canopy capsule, and
lemniscate 1link forces., Even with these reductions, the three—dimensional static
equilibrium equations are cumbersome. A two-dimensional analysis of the shield is
obtained by further reduction of the three-~dimensional equilibrium equations by elim-
ination of out-of-plane forces., The two—dimensional planar model, defined by the
face~to~waste and roof~to-floor plane, should be adequate for most shield analyses,
as the primary response of the shield structure is to resist roof-to-floor and face-
to-waste strata displacement.

The research presented in this report 1s a first step 1n the solution of shield
mechanics. The approach taken in these initial efforts is to provide closed-form
solutions of statically determinate models by rigid-body analysis of the shield
structure. As shown in the analysis, the determinate solution requires several as-
sumptions as to the participation of forces and moments, A more prudent approach,
especially in the longer term, 18 to achieve an indeterminate solution utilizing a
work—energy or stiffness evaluation. Such models will be evaluated as part of the
Bureau's continuing efforts in mine roof support research.
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